

3RD PIANC ASIA PACIFIC CONFERENCE 27-30 AUGUST 2024 SYDNEY, AUSTRALIA www.piancapac.com

SYDNEY, AUSTRALIA

www.piancapac.com

Presentation Outline

- Overview of WG 212 in general
- Results related to acceptable movements for container ships at berth
- Background on Container Handling
- Overview of Historical Criteria
- Data Sources
- Numerical Simulations and results
- Criteria and conclusions

3RD PIANC ASIA PACIFIC CONFERENCE 27-30 AUGUST 2024 SYDNEY, AUSTRALIA www.piancapac.com

WG 212 Overview

- Established in 2019
- Report published June 2023
- Chairman: Majid Yavary
- Co-chairman: Martijn de Jong
- Previous PIANC criteria:
 - WG 24 (1995) covering all ships
 - WG 115 (2012) for container ships
- Mandate: "Review and update criteria from WG 24 (and WG 115) through collection of new publicly available information"
- Vessel/terminal types:
 - Liquid bulk
 - Dry bulk
 - General cargo
 - Container

- Ro-Ro
- Cruise
- Marine support
- Fishing

3RD PIANC ASIA PACIFIC CONFERENCE 27-30 AUGUST 2024 SYDNEY, AUSTRALIA www.piancapac.com

Definition of Criteria

- Amplitude for all degrees of freedom
- Maximum motions for all vessels, except significant for efficiency criteria for container ships
- Surge, sway and heave criteria defined at the location on the vessel where the (un)loading takes place
- · Roll criteria maintained
- Pitch and yaw criteria not needed

Container Handling

- Ship-to-Shore Gantry Cranes with typical Loading rates of 25-40 moves per hour
- Terminal competition led to a focus on efficiency
- Efficiency negatively impacted by excessive motions
- (Un)loading longitudinally per bay above and below deck
- Crane operators adjust and follow motions in sway but not surge
- Containers are placed below deck in cell guides (tolerances +/- 19mm and 12.5mm) through entry guides (tolerances +/- 120mm and 110mm)
- Above deck with the help of spreader flaps and connecting twist locks

3RD PIANC ASIA PACIFIC CONFERENCE 27-30 AUGUST 2024 SYDNEY, AUSTRALIA www.piancapac.com

Historical Criteria

- The first report on Criteria was from WG 24 (1995) and expressed as 100% and 50% loading efficiency criteria
- WG 115 (2012) reviewed the criteria and expressed them in terms of Significant Motion Amplitudes
- WG 212 (2024) further reviewed the criteria by analysing data from various sources.

Source	Surge (m)	Sway (m)	Heave (m)	Roll (°)	Pitch (°)	Yaw (°)
Jensen et al. (1990)	± 0.50	+ 0.40	± 0.45	± 1.50	± 0.75	± 0.25
Smitz (1992) ¹	± 0.50	+ 0.30	± 0.30	± 1.00	NA	NA
PIANC WG 24 (1995)	± 0.50	+ 0.60	± 0.40	± 1.50	0.50	± 0.50
D'Hondt (1999)	± 0.24	+ 0.22	± 0.20	± 0.24	± 0.40	± 0.10
Moes (2000) ¹	± 0.30	+ 0.30	± 0.30	± 0.50	± 0.50	± 0.50

Note: 1. Unpublished communications.

Surge (m)	Sway (m)	Heave (m)	Roll (°)	Pitch (°)	Yaw (°)
0.2 to 0.4 ¹	± 0.4	+ 0.3	± 1.0	± 0.3	± 0.3

Data Sources

- Additional feedback from terminal operators.
- Actual field recorded surge and sway measurements with associated container handling rates
- Experimental container handling rates from idealised surge oscillations
- Computer simulations of container loading under prescribed oscillatory movements

Terminal Operator Feedback

- Limited to modern and efficient Northern European terminal operators
- Loading efficiency decreases with a significant surge amplitude of 0.2 m for loading and unloading below deck
- Loading efficiency decreases with a significant surge amplitude of 0.4 m for loading above the deck with the use of spreader flaps
- Operators deem 0.3 m an appropriate limit for the onset of operational efficiency reduction as an average of below and above deck handling

3RD PIANC ASIA PACIFIC CONFERENCE 27-30 AUGUST 2024 SYDNEY, AUSTRALIA www.piancapac.com

Field Data

- 150 vessel calls from two measurement campaigns (2000; 2008)
- Scatter due to
 - Container position
 - Bay adjustment
 - Operator skill level
 - Quayside influences

- Main observations from data
 - Efficiency remains constant for small movements
 - Subsequent downtrend in efficiency with increased surge movement
 - Efficiency stabilises for large surge movements

3RD PIANC ASIA PACIFIC CONFERENCE 27-30 AUGUST 2024 SYDNEY, AUSTRALIA www.piancapac.com

Experimental Data

- Slinn (1979) Experimental setup container crane and oscillating target
- Number of attempts (N) is proportional to target velocity (V)
- Measured ratio:

•
$$m = N/V = 10 \text{ s/m}$$

- Delay time:
 - $t_d = mV_{rms}T_s/2$
- Moves per hour:

$$\bullet \quad M = \frac{3600}{t_c + t_c}$$

• t_c is undisrupted cycle time

Experimental Model

- Independent of period T_s
- Immediate loss of Efficiency
- Less pronounced decrease of efficiency for large motions
- (un)loading can still continue for large movements

3RD PIANC ASIA PACIFIC CONFERENCE 27-30 AUGUST 2024 SYDNEY, AUSTRALIA www.piancapac.com

Computer Simulation

- Simulates container loading onto a moving target according to a defined surge motion spectrum
- Additional parameters implemented in the model:
 - Surge displacement tolerances for placing containers
 - Surge velocity tolerance for placing the container
 - Time to place container
 - Time allowance to accommodate spreader movement

3RD PIANC ASIA PACIFIC CONFERENCE 27-30 AUGUST 2024 SYDNEY, AUSTRALIA www.piancapac.com

Computer Simulation

- Parameters calibrated using measured and experimental results
 - Average baseline undisrupted loading rate 30 moves per hour (120 s per placement)
 - Surge displacement tolerance 0.12m corresponding to entry guide tolerance
 - Surge velocity tolerance 0.10 m/s corresponding to the experimental results from Slinn
- Efficiency impacted more for higher loading rates
- 95 100 % Efficiency rates are not strongly dependent on nominal crane productivity rate

Analysis for Criteria

- Surge movement criteria for container loading efficiency were reviewed based on:
 - Operator surveys
 - Field measurement
 - Experimental data
 - Calibrated numerical simulations
- First noticeable reduction in efficiency (95%) occur at 0.3 m
- 90% and 85% Efficiency levels are based on data and simulation results

Efficiency Criteria for (Un)loading of Container Ships

- Surge is usually governing
- Significant amplitudes
- Sway defined at the bay that is loaded

Criteria

- 95% efficiency:
 - Surge: ±0.3 m
 - Sway: ±0.5 m
 - Roll: ±1° to 2°
- 90% efficiency:
 - Surge: ±0.6 m
- 85% efficiency:
 - Surge: ±0.8 m

